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e-Polarimetry at the EIC
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Close to the experimental IR it will 
be a mix (mostly longitudinal)

At the IP12 location beam will be fully 
transverse



e-Polarimetry requirements for the EIC
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• At 18 GeV bunches will be replaced 
every 2 min
• A full polarimetry measurement 

needs to happen in a shorter time 
span

• The amount of electrons per bunch 
is fairly small ~24 nC
• will need bright laser beam to obtain 

needed luminosity

• A fast polarimeter will allow for 
faster machine setup

• Distance between buckets is ~10ns 
(@5,10 GeV)
• bunch by bunch measurement cannot be 

done with a CW laser without very fast 
detectors

• For systematic studies we would like to 
have the ability to either measure a 
single bunch (~78kHz) or have 
interactions with all 1160 (260) 
bunches at 10 and 5 GeV (18GeV)

• Backgrounds needs to be under 
control

• Laser polarization needs to be known 
to a high degree



Compton scattering basics

• Polarized photon-electron scattering

• Potential to measure redundantly with scattered photon and electron

• Fully QED calculable analyzing power

• Interactions happen with a small fraction of the beam particles leaving it 
undisturbed
• Monitoring can be performed in real time during actual data taking

Ciprian Gal 4



Compton polarimeters through history

• Beyond LEP there were quite a few transverse polarimeters around the 
world that were used for beam diagnostics (an absolute polarization was 
not in the plan)

• Pulsed lasers generally tend to give more interactions per crossing so a 
multi-photon (or integrating) method was employed
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Polarimeter Energy Total Sys. Uncertainty Type of laser Measurement type

CERN LEP (T) 46 GeV 5% ~10s Hz pulsed Nd:YAG (532nm): 50 -100 W Multi-photon

HERA (T) 27 GeV 1.9% CW 10W (514.5nm) Argon Single-photon

HERA (L) 27 GeV 1.6% 100Hz pulsed 10W Nd:YAG (532nm) Single/Multi-photon

HERA (L) 27 GeV 1% CW cavity 3 kW, Single-photon

SLD at SLAC (L) 45.6 GeV 0.5% 17 Hz pulsed ?? W Nd:YAG (532nm) Multi-photon

JLab Hall A (L) 1-6 GeV 1-3% CW cavity 3.7 kW Nd:YAG (532nm) Single/Multi-photon

JLab Hall C (L) 1.1 GeV 0.6% CW cavity 1.7 kW Nd:YAG (532nm) Single/Multi-photon



e-Polarimetry requirements for the EIC
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• At 18 GeV bunches will be replaced 
every 2 min
• A full polarimetry measurement 

needs to happen in a shorter time 
span

• The amount of electrons per bunch 
is fairly small ~24 nC
• will need bright laser beam to obtain 

needed luminosity

• A fast polarimeter will allow for 
faster machine setup

• Distance between buckets is ~10ns 
(@5,10 GeV)
• bunch by bunch measurement cannot be 

done with a CW laser without very fast 
detectors

• For systematic studies we would like to 
have the ability to either measure a 
single bunch (~78kHz) or have 
interactions with all 1160 (260) 
bunches at 10 and 5 GeV (18GeV)

• Backgrounds needs to be under 
control

• Laser polarization needs to be known 
to a high degree



Compton scattering basics
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• Calculations based on 532nm laser system
• For both the longitudinal and transverse 

polarimetry measurements at the energies of 
interested for the EIC the analyzing powers are 
significant

Analyzing power at φ = 0



Transverse polarization
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• Asymmetry is usually measured with respect 
to the vertical axis
• The scattered electron reaches the largest 

analyzing power at large scattering angles

• The higher the energy the tighter the 
collimation of the scattered photons will be
• This leads to significant constraints on detector 

segmentation

Backscattered Photon

Scattered electron

Beam E = 18 GeV

Beam E = 18 GeV



Luminosity calculations for individual bunches
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• Assuming one scattered particle per bunch would allow us to calculate the 
luminosity needed and a time estimate for how long it would take to reach a 1% 
statistical precision

• For all configurations envisioned for the EIC (5-18 GeV) the luminosity requirements 
are on the level of few 1/(barn*s)

• The times needed to the needed statistics for the signal are on the level 30s at 18 
GeV
• Lower energies are less of a concern due to the longer lived stores
• This would allow for simultaneous measurement of all bunches (given a fast detector)



Luminosity calculations for individual bunches
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• The dependence of the luminosity of 
crossing angle needs to take into 
account the transverse profile of the 
beam and the length of the pulse

• The estimation on the left is made for 
a single pulse 

• For a 10W 100MHz pulsed laser with a 
12ps pulse can provide about 6*105

1/(barn*s) of luminosity
• Comparing this to the single photon 

measurement luminosities shows that 
such a laser will be sufficient 

S. Verdu-Andres (CAD): https://www.bnl.gov/isd/documents/95396.pdf



e-Polarimetry requirements for the EIC
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• At 18 GeV bunches will be replaced 
every 2 min
• A full polarimetry measurement 

needs to happen in a shorter time 
span

• The amount of electrons per bunch 
is fairly small ~24 nC
• will need bright laser beam to obtain 

needed luminosity

• A fast polarimeter will allow for 
faster machine setup

• Distance between buckets is ~10ns 
(@5,10 GeV)
• bunch by bunch measurement cannot be 

done with a CW laser without very fast 
detectors

• For systematic studies we would like to 
have the ability to either measure a 
single bunch (~78kHz) or have 
interactions with all 1160 (260) 
bunches at 10 and 5 GeV (18GeV)

• Backgrounds needs to be under 
control

• Laser polarization needs to be known 
to a high degree



HERA Transverse Polarimeter
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• Measurement extracted from an up-down energy 
asymmetry

• Chopper used for making background measurement

• Background measurements (and simulation cross 
checks) are very important to reach high precision
• Beyond Compton scattering we need to measure beam only 

and laser “only” backgrounds (flexibility for the laser is 
crucial)

• Leading systematic was related to the detector 
• Systematics for laser were lower

B. Sobloher et al, DESY-11-259 , arXiv:1201.2894



Compton laser setup

• The Compton laser systems are 
fairly standard
• The SLD laser monitoring setup 

already had most of the tools we 
would need

• Scans performed with the PC 
during the experiment and data 
taking allowed for significantly 
reduced systematics related to the 
polarization state of the laser
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SLD: M. Woods arXiv:hep-ex/9611005v1



DOCP through windows
• Typically the polarization is monitored 

through measurements of the 
transmitted laser light (after the IP)

• The “transfer function” can be 
measured on the bench but variations 
(such as tightening bolts or pulling 
vacuum) change the function making 
it unusable for the actual data taking

• Tests done with cavity at JLab showed 
that large differences in the degree of 
circular polarization can be obtained 
when straining the windows

Ciprian Gal 14



Dealing with window birefringence
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• In order to obtain circular polarization at 
the interaction point with the electron 
beam one can use the information 
obtained from the back-reflected light
• In this case it would be off of mirror M1

• Using the optical reversibility theorem 
one can relate the amount of light 
reaching “PS” to the degree of circular 
polarization inside the cavity
• M. Dalton and D. Jones showed this to be 

true in a setup at JLab

• By performing detailed scans of the half 
and quarter wave plates one can 
maximize the circular light at the IP and 
monitor it throughout the data taking

arXiv:1509:06642v2



Current design of EIC laser system
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• The initial laser system design uses most of the design features highlighted in the 
previous Compton polarimeter implementations
• As was before we need the laser system to be away from potential fatal radiation fields inside 

the tunnel (we plan to evaluate the use of high power laser fiber)

• The vacuum resident insertable mirror will be needed in order to be able to 
monitor the DOCP at the interaction point



Gain switched seed

Ciprian Gal 17

• The gain switched seed laser design 
developed at CEBAF for the injector 
satisfies all the requirements that we 
discussed so far
• The RF lock allows us to synchronize to all or 

specific electron bunches 

• The pulse longitudinal width will be smaller 
than the electron bunch (allowing us to 
potentially measure the longitudinal 
polarization profile)

• The PPLN or LBO crystal will allow us to 
frequency double the 1064nm light to 532

• The system has proven to be very reliable 
and has been adopted by other facilities 
(such as the Maintz Microtron) https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.9.063501



Project and Deliverables
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• Detail design of 
laser system

• Seed and preamp 
construction
• Low power

characterization

Year 1 Year 2 Year 3

• High power fiber 
amplifier

• Fiber delivery

• Frequency doubler

• Design vacuum 
system

• Check 100% DOCP 
laser polarization 
through vacuum 
windows

• Remote control 
stages

• Picomotor controller

• Potential test at JLab

• Publish results



Budget
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• The proposed system has two major components
• The laser itself and fiber transport
• The optics needed to prepare and characterize the laser polarization

• Labor to be provided by collaborative institutions with SBU taking the lead 
and JLab and UVa playing a technical supervisory role
• 0.3 FTE C. Gal; 0.3 FTE CFNS/joint postdoc; 0.5 FTE SBU Master student for the first year



Budget
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Year 1

65k$

Year 2

57.5k$

Year 3

14k$



Summary and Challenges
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• A Compton polarimeter is the ideal system to 
measure and monitor e-beam polarization

• The proposed system would satisfy all the 
requirements for the EIC Compton 
polarimeter and reach ~1% uncertainties
• The 10W laser power would be sufficient to 

obtain at least one collision per bunch crossing 
allowing us to make a fast measurement of each 
bunch

• The variable frequency would allow for 
background measurements and systematic 
studies

• The proposed optics elements would allow for 
the characterization and continuous monitoring 
of the laser polarization properties 

• The high power fiber transport will need to be 
tested in order to allow for a robust system



Backup
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Current design of EIC laser system
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• The polarization setup for the EIC Compton will 
follow the same logical reasoning as the Jefferson 
Lab measurements



Longitudinal vs transverse
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• While both cases have dependence 
on energy the transverse also has an 
azimuthal dependence

**Calculations based on 
532nm laser system



Longitudinal polarization
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• The energy in the photon detector can measured with calorimetry while the 
electron is momentum-analyzed by a dipole after the interaction
• No transverse differences exist for the photon

• Allows for relatively simple analysis of multi-particle crossing

**Calculations based 
on 532nm laser system

arXiv:1601:00251v2



SLD laser setup

• The laser setup for most 
Compton polarimeters is 
fairly standard

• Beyond reaching the 
needed luminosity the 
laser needs to be circularly 
polarized at the IP
• Pockels cells in combination 

with quarter or half wave 
plates allow for an arbitrary 
laser configuration setup (to 
compensate for any 
distortions before the IP)

• Polarization and intensity 
monitoring is setup to 
ensure reliable operation
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M. Woods: (https://www.jlab.org/polarimetry/talks/woods_sld.pdf)



Wavelength dependence for analyzing power

• The maximum analyzing power 
increases with lower laser wavelength 
reaching a peak close to 100nm

• Additionally we can see the position of 
peak gets further spread out allowing 
for easier detection

• The longitudinal analyzing power shows 
similar behaviour, just on a different 
scale
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5 GeV
12 GeV
18 GeV

e-@18 GeV



Lasers as a function of wavelength
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• When looking for a laser we need to take into account ease of setup and reliability
• There is a good reason most Compton polarimeters used Nd:YAG lasers at their core
• A low power Nd:YAG laser can be amplified quite readily to larger powers without much custom 

equipment

• Additionally we need to make sure we can have enough power from the laser to 
provide sufficient luminosity (few Watts of power will be needed)

~10W



SLD laser DOCP

• The SLD laser monitoring setup 
already has all the needed tools

• Scans performed with the PC 
during the experiment and data 
taking allowed for significantly 
reduced systematics related to 
the polarization state of the laser
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M. Woods arXiv:hep-ex/9611005v1



Layout at IP12
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• As the scattered particles pass through the different magnets the electrons are 
stretched horizontally

• At the detector plane we can clearly see both the spatial and energy dependence

QF13 QD23 QD12 QF11QD23 QD10 QF9

~25m IP to detector plane

Laser beamelectron beam



Envelopes at detector plane
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• 18 GeV will provide the most stringent 
requirements for the photon detector 
due to the small vertical separation 
between the two peaks of the 
asymmetry

• The electrons have a extreme almond 
shape with a ratio between the 
horizontal and vertical extent of about 
320
• The momentum analyzed electrons show the 

peak analyzing power at about 30% of the 
minimum energy as expected

• A preliminary analysis of the vertex 
smearing show that the transverse extent 
of the electron beam will have an 
important effect by almost doubling the 
vertical axis

Photon: 5GeV Photon: 18GeV
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Detector segmentation
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• By segmenting the simulated 
signal vertically and 
assigning an arbitrary 
normalization one can use 
the unbinned distribution to 
extract the normalization

• This rough analysis gives us a 
feel for what the vertical 
segmentation of the two 
detectors will need to be
• For the photon detector a 

segmentation of better than 
200 micron will be needed

• The electron detector will 
require a 50 micron or better 
segmentation

segmentation 
[um]

Extracted 
normalization

500 77.7
400 80.4

333.33 82.7
200 84.4
100 85.1
50 85.0

Input normalization: 85%

segmentation 
[um]

Extracted 
normalization

400 30.53
200 75.71
100 73.74
50 73.43
10 73.01
5 73.00

Input normalization: 73%

Calculation done by D. Gaskell



Summary and outlook
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• For the EIC we are trying to incorporate all the 
lessons that were learned at previous facilities

• A single pass 10 W pulsed laser provides 
enough luminosity to be able to measure 
bunch by bunch polarizations on the level of 
minutes with 1% statistical precision
• At 2min lifetime for 18GeV we can still reach the 

1% goal if we consider the luminosity weighted 
polarization 

• Careful analysis needs to be done for the IR 
location
• A longitudinal polarimeter seems to more likely 

there
• This would provide a significant cross check on the 

IP12 Transverse polarimeter and we can combine 
the results (as HERA did)
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5 vs 18 GeV at e det plane
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5GeV 18GeV



HERA (T) systematics
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SLD
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M. Woods: (https://www.jlab.org/polarimetry/talks/woods_sld.pdf)



Wavelength dependence for longitudinal analyzing power
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5 GeV
12 GeV
18 GeV

e-@18 GeV



JLab Compton polarimetry
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Time for 1% measurements
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Compton polarimeters through history

• Beyond LEP there were quite a few transverse polarimeters around the world that were 
used for beam diagnostics (an absolute polarization was not in the plan)

• Longitudinal polarimeters are easier to calibration due to the Compton edge and the 0-
crossing, making the data easier to analyze

• Pulsed lasers generally tend to give more interactions per crossing so a multi-photon (or 
integrating) method was employed
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Polarimeter Energy Total Sys. Uncertainty Type of laser Measurement type

CERN LEP (T) 46 GeV 5% ~10s Hz pulsed Nd:YAG (532nm): 50 -100 W Multi-photon

HERA (T) 27 GeV 1.9% CW 10W (514.5nm) Argon Single-photon

HERA (L) 27 GeV 1.6% 100Hz pulsed 10W Nd:YAG (532nm) Single/Multi-photon

HERA (L) 27 GeV 1% CW cavity 3 kW, Single-photon

SLD at SLAC (L) 45.6 GeV 0.5% 17 Hz pulsed ?? W Nd:YAG (532nm) Multi-photon

JLab Hall A (L) 1-6 GeV 1-3% CW cavity 3.7 kW Nd:YAG (532nm) Single/Multi-photon

JLab Hall C (L) 1.1 GeV 0.6% CW cavity 1.7 kW Nd:YAG (532nm) Single/Multi-photon


